Let A=∣∣abcbcacab∣∣ [ apply C1→C1+C2+C3] =∣∣a+b+ca+b+ca+b+cbcacab∣∣ =(a+b+C)∣∣111bcacab∣∣ [ apply R2→R2−R1 and R3→R3−R1] =(a+b+c)∣∣100bc−ba−bca−cb−c∣∣ =(a+b+c)[(c−b)(b−c)−(a−c)(a−b)] =(a+b+c)[bc−b2−c2+bc−a2+ab+ac−bc] =−(a+b+c)(a2+b2+c2−ab−bc−ca) =−21(a+b+c)[(a−b)2+(b−c)2+(c−a)2]
Since, a,b,c are distinct positive numbers. ∴ The value of determinant A is less than 0 .