Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a, b, c are distinct and |a a2 a3-1 b b2 b3-1 c c2 c3-1|=0 then abc equals
Q. If
a
,
b
,
c
are distinct and
∣
∣
a
b
c
a
2
b
2
c
2
a
3
−
1
b
3
−
1
c
3
−
1
∣
∣
=
0
then
ab
c
equals
715
133
Determinants
Report Error
A
0
B
1
C
-1
D
-2
Solution:
Write the determinant as
=
ab
c
Δ
1
−
Δ
2
where
Δ
1
=
∣
∣
1
1
1
a
b
c
a
2
b
2
c
2
∣
∣
=
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
and
Δ
2
=
∣
∣
a
b
c
a
2
b
2
c
2
1
1
1
∣
∣
=
Δ
1
∴
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
(
ab
c
−
1
)
=
0
Since,
a
,
b
,
c
are distinct, we get
ab
c
−
1
=
0
or
ab
c
=
1