Q.
If a,b,c and d are four numbers in the interval [0,π] such that sina+7sinb=4(sinc+2sind) and cosa+7cosb=4(cosc+2cosd) , then the numerical value of cos(a−d)7cos(b−c) is
It is given that sina+7sinb=4sinc+8sind ⇒sina−8sind=4sinc−7sinb....(i)
Also given that cosa−8cosd=4cosc−7cosb…(ii)
Squaring and adding Eq. (i) and (ii), we get 1+82−16(sinasind+cosacosd) =16+49−56(sinbsinc+cosbcosc) ⇒−16cos(a−d)=−56cos(b−c) ⇒cos(a−d)cos(b−c)=72 ⇒cos(a−d)7cos(b−c)=2