Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a+b+c=6 and (1/a)+(1/b)+(1/c)=(3/2), then find (a/b)+(a/c)+(b/a)+(b/c)+(c/a)+(c/b).
Q. If
a
+
b
+
c
=
6
and
a
1
+
b
1
+
c
1
=
2
3
, then find
b
a
+
c
a
+
a
b
+
c
b
+
a
c
+
b
c
.
1047
199
Polynomials, LCM and HCF of Polynomials
Report Error
A
6
B
4
C
9
D
12
Solution:
a
+
b
+
c
=
6
a
1
+
b
1
+
c
1
=
2
3
b
a
+
c
a
+
a
b
+
c
b
+
a
c
+
b
c
=
a
[
b
1
+
c
1
]
+
b
[
a
1
+
c
1
]
+
c
[
a
1
+
b
1
]
Substituting values form equation (2)
=
a
[
2
3
−
a
1
]
+
b
[
2
3
−
b
1
]
+
c
[
2
3
−
c
1
]
=
2
3
a
−
1
+
2
3
b
−
1
+
2
36
−
1
=
2
3
a
+
3
b
+
3
c
−
3
=
2
3
(
a
+
b
+
c
)
−
3
Substituting values form equation (1)
=
2
3
(
6
)
−
3
=
2
18
−
3
=
9
−
3
=
6