Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If |a-b-c&2a&2a 2b&b-c-a&2b 2c&2c&c-a-b| = (a + b + c) (x + a + b + c)2, x ≠ 0 and a + b + c ≠ 0, then x is equal to :
Q. If
∣
∣
a
−
b
−
c
2
b
2
c
2
a
b
−
c
−
a
2
c
2
a
2
b
c
−
a
−
b
∣
∣
=
(
a
+
b
+
c
)
(
x
+
a
+
b
+
c
)
2
,
x
=
0
and
a
+
b
+
c
=
0
, then
x
is equal to :
2564
238
JEE Main
JEE Main 2019
Determinants
Report Error
A
−
(
a
+
b
+
c
)
26%
B
2
(
a
+
b
+
c
)
41%
C
ab
c
18%
D
−
2
(
a
+
b
+
c
)
15%
Solution:
∣
∣
a
−
b
−
c
2
b
2
c
2
a
b
−
c
−
a
2
c
2
a
2
b
c
−
a
−
b
∣
∣
R
1
→
R
1
+
R
2
+
R
3
=
∣
∣
a
+
b
+
c
2
b
2
c
a
+
b
+
c
b
−
c
−
a
2
c
a
+
b
+
c
2
b
c
−
a
−
b
∣
∣
=
(
a
+
b
+
c
)
∣
∣
1
2
b
2
c
0
−
(
a
+
b
+
c
)
2
c
0
0
c
−
a
−
b
∣
∣
=
(
a
+
b
+
c
)
(
a
+
b
+
c
)
2
⇒
x
=
−
2
(
a
+
b
+
c
)