L.H.S.=sin22A+sin22B+sin22C =21−cosA+21−cosB+21−cosC =23−(cosA+cosB+cosC) =23−S…(i)
where S=cosA+cosB+cosC =(cosA+cosB)+cosC =2cos(2A+B)cos(2A−B)+cos(2⋅2C) =2cos(90∘−2C)cos(2A−B)+cos(2⋅2C) =2sin2Ccos(2A−B)+1−2sin22C =1+2sin2C{cos(2A−B)−sin2C} =1+2sin2C{cos(2A−B)−sin(90∘−2A+B)} =1+2sin2C{cos(2A−B)−cos(2A+B)} =1+2sin2C{−2sin2Asin{−2B}} =1+4sin2Asin2Bsin2C
Then from (i), we get L.H.S.=23−(1+4sin2Asin2Bsin2C) =1−2sin2Asin2Bsin2C