Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a+b+c=0 and a, b, c are rational, then the roots of the equation (b+c-a) x2+(c+a-b) x+(a+b-c)=0 are
Q. If
a
+
b
+
c
=
0
and
a
,
b
,
c
are rational, then the roots of the equation
(
b
+
c
−
a
)
x
2
+
(
c
+
a
−
b
)
x
+
(
a
+
b
−
c
)
=
0
are
2523
213
Complex Numbers and Quadratic Equations
Report Error
A
rational
B
irrational
C
imaginary
D
equal
Solution:
We have,
D
=
(
c
+
a
−
b
)
2
−
4
(
b
+
c
−
a
)
(
a
+
b
−
c
)
=
(
a
+
b
+
c
−
2
b
)
2
−
4
(
a
+
b
+
c
−
2
a
)
(
a
+
b
+
c
−
2
c
)
=
(
−
2
b
)
2
−
4
(
−
2
a
)
(
−
2
c
)
=
4
(
b
2
−
4
a
c
)
=
4
[
(
−
a
−
c
)
2
−
4
a
c
]
=
4
(
a
−
c
)
2
=
[
2
(
a
−
c
)
]
2
=
perfect square
∴
Roots are rational