Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a+b+c=0 and a2+b2+c2-ab-bc-ca≠ 0, ∀ a,b,c∈ R , then the system of equations ax+by+cz=0, bx+cy+az=0 and cx+ay+bz=0 has
Q. If
a
+
b
+
c
=
0
and
a
2
+
b
2
+
c
2
−
ab
−
b
c
−
c
a
=
0
,
∀
a
,
b
,
c
∈
R
, then the system of equations
a
x
+
b
y
+
cz
=
0
,
b
x
+
cy
+
a
z
=
0
and
c
x
+
a
y
+
b
z
=
0
has
1655
201
NTA Abhyas
NTA Abhyas 2020
Matrices
Report Error
A
A unique solution
B
Infinite solutions
C
No solution
D
Exactly two solutions
Solution:
Note that
∣
∣
a
b
c
b
c
a
c
a
b
∣
∣
=
2
−
(
a
+
b
+
c
)
[
(
a
−
b
)
2
+
(
b
−
c
2
)
+
(
c
−
a
)
2
]
Since,
D
=
0
&
(
0
,
0
,
0
)
is a solution, hence the system has infinite solutions.