4432
209
Complex Numbers and Quadratic Equations
Report Error
Answer: 8
Solution:
(a+b+c)2=0 ⇒a2+b2+c2+2(ab+bc+ca)=0 ⇒ab+bc+ca=−2
Squaring a2b2+b2c2+c2a2+2ab2c+2a2bc+2bac2=4 ⇒a2b2+b2c2+c2a2+2abc(a+b+c)=4 ⇒a2b2+b2c2+c2a2=4
Now a2+b2+c2=4
Squaring, we get a4+b4+c4+2(a2b2+a2c2+b2c2)=16
or a4+b4+c4=8