Q.
If a,b are co-prime numbers and satisfying (2+3)loga(2−3)1+logb(3+13−1)1=121, then (a+b) can be is equal to
368
108
Continuity and Differentiability
Report Error
Solution:
As, loga(2−3)1+logb(3+13−1)1=log2−3a+log3+13−1b =log2−3a+log2−3b=log2−3 (ab)
Now, (2+3)log2−3(ab)=121⇒(2−3)log2−3(ab1)=121 ⇒ab1=121⇒ab=12
As a,b are co-prime numbers, so either a=4,b=3 or a=3,b=4. Hence, (a+b)=7.