Given, a,b,c are unit vectors. ⇒∣a∣=∣b∣=∣c∣=1...(i)
Also, given a+b+c=0 ⇒(a+b)=−c
Squaring on both sides, we get ⇒(a+b)2=(c)2 ⇒(a)2+(b)2+2a⋅b=(c)2 ⇒∣a∣2+∣c∣2+2a⋅b=∣c∣2 [∵(a)2=∣a∣2] ⇒1+1+2a⋅b=1 [from Eq. (i)] ⇒2a⋅b=−1 ⇒a⋅b=−1/2=∣a∣∣b∣cosθ ⇒cosθ=−1/2=cos2π/3 [from Eq. (i)] ⇒θ=2π/3