Let (a,b)⊂A×(B∩C) →a∈A and b∈(B∩C) ⇒a∈A and (b∈B and b∈C) ⇒(a∈A and b∈B) and (a∈A and b∈C) ⇒(a,b)∈A×B and (a,b)∈(A×C) (a,b)∈(A×B)∩(A×C) ⇒A×(B∩C)⊂(A×B)∩(A×C)....(i)
Again, let (x,y)∈(A×B)∩(A×C) (x,y)∈A×B and (x,y)∈A×C ⇒(x∈A and y∈B) and (x∈A and y∈C) ⇒x∈A and (y∈B and y∈C) ⇒x∈A and y∈(B∩C) ⇒(x,y)∈A×(B∩C) ⇒(A×B)∩(A×C)⊂A×(B∩C)....(ii)
From Eqs. (i) and (ii), we get A×(B∩C)=(A×B)∩(A×C)....(ii)
Now, A×(B′∪C′) =A×[(B′)′∩(C′)′] (by De-Morgan’s law) =A×(B∩C)[∵(A′)=A] =(A×B)∩(A×C)[ by Eq. (iii) ]