Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a,b and c are in A.P., then determinant | beginmatrixx+2&x+3&x+2a x+3&x+4&x+2b x+4&x+5&x+2c endmatrix| is
Q. If
a
,
b
and
c
are in
A
.
P
.
,
then determinant
∣
∣
x
+
2
x
+
3
x
+
4
x
+
3
x
+
4
x
+
5
x
+
2
a
x
+
2
b
x
+
2
c
∣
∣
is
2253
188
VITEEE
VITEEE 2013
Determinants
Report Error
A
0
100%
B
1
0%
C
x
0%
D
2x
0%
Solution:
Let
Δ
=
∣
∣
x
+
2
x
+
3
x
+
4
x
+
3
x
+
4
x
+
5
x
+
2
a
x
+
2
b
x
+
2
c
∣
∣
=
2
1
∣
∣
x
+
2
0
x
+
4
x
+
3
0
x
+
5
x
+
2
a
2
(
2
b
−
a
−
c
)
x
+
2
c
∣
∣
(using
R
2
→
2
R
2
−
R
1
−
R
3
)
But a, b and c are in AP using 2b = a + c, we get
Δ
=
2
1
∣
∣
x
+
2
0
x
+
4
x
+
3
0
x
+
5
x
+
2
a
0
x
+
2
c
∣
∣
=
0
Since, all elements of
R
2
are zero.