Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a, b and c are in A.P., then the value of | x+2&x+3 &x+a x+4&x+5& x+b x+6&x+7 &x+c | is
Q. If
a
,
b
and
c
are in A.P., then the value of
∣
∣
x
+
2
x
+
4
x
+
6
x
+
3
x
+
5
x
+
7
x
+
a
x
+
b
x
+
c
∣
∣
is
2678
196
KCET
KCET 2014
Determinants
Report Error
A
x
−
(
a
+
b
+
c
)
15%
B
9
x
2
+
a
+
b
+
c
27%
C
0
40%
D
a
+
b
+
c
18%
Solution:
Let
Δ
=
∣
∣
x
+
2
x
+
4
x
+
6
x
+
3
x
+
5
x
+
7
x
+
a
x
+
b
x
+
c
∣
∣
Applying
R
1
→
R
1
−
R
2
and
R
2
→
R
2
−
R
3
, we get
Δ
=
∣
∣
−
2
−
2
x
+
6
−
2
−
2
x
+
7
a
−
b
b
−
c
x
+
c
∣
∣
Since,
a
,
b
and
c
are in
A
P
.
∴
a
−
b
=
b
−
c
Thus, Rows
R
1
and
R
2
are identical.
Hence,
Δ
=
0