Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A, B and C are angles of a triangle, then the determinant | beginmatrix-1&cos C&cos B cos C&-1&cos A cos B&cos A&-1 endmatrix|=
Q. If
A
,
B
and
C
are angles of a triangle, then the determinant
∣
∣
−
1
cos
C
cos
B
cos
C
−
1
cos
A
cos
B
cos
A
−
1
∣
∣
=
3952
186
Determinants
Report Error
A
0
33%
B
−
1
33%
C
1
33%
D
None of these
0%
Solution:
Let
Δ
=
∣
∣
−
1
cos
C
cos
B
cos
C
−
1
cos
A
cos
B
cos
A
−
1
∣
∣
Applying
C
2
→
C
2
+
(
cos
C
)
C
1
and
C
3
→
C
3
+
(
cos
B
)
C
1
, we get
Δ
=
∣
∣
−
1
cos
C
cos
B
0
−
1
+
co
s
2
C
cos
A
+
cos
B
cos
C
0
cos
A
+
cos
C
cos
B
−
1
+
co
s
2
B
∣
∣
=
∣
∣
−
1
cos
C
cos
B
0
−
s
i
n
2
C
cos
A
+
cos
B
cos
C
0
cos
A
+
cos
C
+
cos
B
−
s
i
n
2
B
∣
∣
Expanding along
R
1
we get
Δ
=
−
1
[
s
i
n
2
C
s
i
n
2
B
−
(
cos
A
+
cos
C
cos
B
)
(
cos
A
+
cos
B
cos
C
)
]
=
[
−
s
i
n
2
C
s
i
n
2
B
−
co
s
2
A
−
cos
A
cos
B
cos
C
−
cos
A
−
cos
B
cos
C
−
co
s
2
B
co
s
2
C
]
=
−
[
(
1
−
co
s
2
C
)
(
1
−
co
s
2
B
)
−
co
s
2
A
−
2
cos
A
cos
B
cos
C
−
co
s
2
B
co
s
2
C
]
=
−
[
1
−
co
s
2
C
−
co
s
2
B
+
co
s
2
B
co
s
2
C
−
co
s
2
B
co
s
2
C
]
=
−
[
1
−
co
s
2
C
−
co
s
2
B
−
co
s
2
A
−
2
cos
A
cos
B
cos
C
]
=
−
[
1
+
co
s
2
A
+
co
s
2
B
+
co
s
2
C
+
2
cos
A
cos
B
cos
C
]
Now, in a triangle
co
s
2
A
+
co
s
2
B
+
co
s
2
C
+
2
cos
A
cos
B
cos
C
=
1
⇒
Δ
=
−
1
+
1
=
0