Given A,B and C are the angles of a triangle. ∴A+B+C=π ⇒A+B=π−C
Now, cos(A+B)=cos(π−C)=−cosC ⇒cosAcosB−sinAsinB=−cosC ⇒cosAcosB+cosC=sinAsinB...(i)
Similarly, cosAcosC+cosB=sinAsinC...(ii)
and sin(B+C)=sin(π−A)=sinA...(iii)
Now, let Δ=∣∣−1cosCcosBcosC−1cosAcosBcosA−1∣∣
By expanding along R1, we get Δ=−1(1−cos2A)+cosC(cosC+cosAcosB) +cosB(cosB+cosAcosC) =−sin2A+cosC(sinAsinB)+cosB(sinAsinC)
[using Eqs. (i) and (ii); and cos2A+sin2A=1] =−sin2A+sinA(sinBcosC+cosBsinC) =−sin2A+sinAsin(B+C) [∵sin(x+y)=sinxcosy+cosxsiny] =−sin2A+sin2A=0 [using Eq. (iii)]