Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If |a+b+2c&a&b c&2a+b+c&b c&a&a+2b+c| = 2 , then a3 + b3 + c3 - 3abc =
Q. If
∣
∣
a
+
b
+
2
c
c
c
a
2
a
+
b
+
c
a
b
b
a
+
2
b
+
c
∣
∣
=
2
, then
a
3
+
b
3
+
c
3
−
3
ab
c
=
2117
226
AP EAMCET
AP EAMCET 2019
Report Error
A
1
−
3
ab
−
3
b
c
−
3
c
a
B
0
C
1
−
2
ab
−
2
b
c
−
2
c
a
D
1
Solution:
∣
∣
a
+
b
+
2
c
c
c
a
2
a
+
b
+
c
a
b
b
a
+
2
b
+
c
∣
∣
=
2
⇒
2
(
a
+
b
+
c
)
∣
∣
1
1
1
a
b
+
c
+
2
a
a
b
b
c
+
a
+
2
b
∣
∣
=
2
[ Applying
C
1
→
C
1
+
C
2
+
C
3
and
taking
2
(
a
+
b
+
c
)
common from
C
1
]
⇒
2
(
a
+
b
+
c
)
∣
∣
1
0
0
a
b
+
c
+
a
0
b
0
c
+
a
+
b
∣
∣
=
2
[ Applying
R
2
→
R
2
−
R
1
and
R
3
→
R
3
−
R
1
]
⇒
2
(
a
+
b
+
c
)
3
=
2
[ expanding along
C
1
]
⇒
(
a
+
b
+
c
)
3
=
1
⇒
a
+
b
+
c
=
1
Now,
a
3
+
b
3
+
c
3
−
3
ab
c
=
(
a
+
b
+
c
)
(
a
2
+
b
2
+
c
2
−
ab
−
b
c
−
c
a
)
=
1
⋅
[
a
2
+
b
2
+
c
2
−
ab
−
b
c
−
c
a
]
=
(
a
+
b
+
c
)
2
−
2
ab
−
2
b
c
−
2
c
a
−
ab
−
b
c
−
c
a
=
1
−
2
ab
−
2
b
c
−
2
c
a
−
ab
−
b
c
−
c
a
=
1
−
3
ab
−
3
b
c
−
3
c
a