Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A and P are different matrices of order n satisfying A3=P3 and A2 P=P2 A (where .|A-P| ≠ 0) then mid A2+P2 is equal to
Q. If
A
and
P
are different matrices of order
n
satisfying
A
3
=
P
3
and
A
2
P
=
P
2
A
(where
∣
A
−
P
∣
=
0
)
then
∣
A
2
+
P
2
is equal to
1411
204
Matrices
Report Error
A
n
B
0
C
∣
A
∥
P
∣
D
∣
A
+
P
∣
Solution:
(
A
2
+
P
2
)
(
A
−
P
)
=
A
3
−
A
2
P
+
P
2
A
−
P
3
=
(
A
3
−
P
3
)
+
(
P
2
A
−
A
2
P
)
=
0
∴
∣
(
A
2
+
P
2
)
(
A
−
P
)
∣=
0
∴
∣
∣
A
2
+
P
2
∣
∣
=
0
(
∵
∣
A
−
P
∣
=
0
)