Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A$ and $P$ are different matrices of order $n$ satisfying $A^{3}=P^{3}$ and $A^{2} P=P^{2} A$ (where $\left.|A-P| \neq 0\right)$ then $\mid A^{2}+P^{2}$ is equal to

Matrices

Solution:

$\left(A^{2}+P^{2}\right)(A-P) =A^{3}-A^{2} P+P^{2} A-P^{3} $
$=\left(A^{3}-P^{3}\right)+\left(P^{2} A-A^{2} P\right) $
$=0 $
$\therefore \,\,\,\mid\left(A^{2}+P^{2}\right)(A-P) \mid=0 $
$\therefore \,\,\, \left|A^{2}+P^{2}\right|=0 \,\, (\because|A-P| \neq 0) $