Since A and B are independent events, therefore, Ac and B are independent and also A and Bc are independent. ∴P(Aˉ∩B)=P(Ac∩B)=P(Ac)P(B) =(1−P(A))P(B)
and P(A∩Bˉ)=P(A∩Bc)=P(A)P(Bc) =P(A)(1−P(B)) (∵Aˉ=AcandBˉ=Bc) ⇒(1−P(A))P(B)=P(Aˉ∩B)=152…(1)
and P(A)(1−P(B))=P(A∩Bˉ)=61…(2)
Subtracting (2) from (1), we obtain P(B)−P(A)=152−61 ⇒P(B)−P(A)=304−5 ⇒P(B)−P(A)=−301…(3)
Substituting this value of P(B) in (1), we get (1−P(A)){P(A)−301}=152 ⇒P(A)+301P(A)−(P(A))2−301=152 ⇒(P(A))2−3031P(A)+301+152=0 ⇒30(P(A))2−31P(A)+5=0 ⇒P(A)=6031±961−600 =6031±19=65,51 Case I. When P(A)=65, then from (3), P(B)=P(A)−301=65−301=3025−1=54 ⇒P(A)=65 and P(B)=54 Case II. When P(A)=51, then from (3), P(B)=P(A)−301=51−301=306−1=61 ⇒P(A)=51 and P(B)=61.