Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A and B are positive acute angles satisfying the equations 3 sin2 A + 2 sin2 B = 1 and 3 sin 2A - 2 sin 2B = 0, then A + 2B =
Q. If A and B are positive acute angles satisfying the equations
3
sin
2
A
+
2
sin
2
B
=
1
and
3
sin
2
A
−
2
sin
2
B
=
0
, then A + 2B =
2619
205
Trigonometric Functions
Report Error
A
3
π
17%
B
4
π
29%
C
2
π
40%
D
0
14%
Solution:
Given
3
sin
2
A
+
2
sin
2
B
=
1
⇒
3
sin
2
A
=
1
−
2
sin
2
B
⇒
3
sin
2
A
=
cos
2
B
∴
cos
(
A
+
2
B
)
=
cos
A
cos
2
B
−
sin
A
sin
2
B
=
(
cos
A
)
(
3
sin
2
A
)
−
sin
A
(
2
3
sin
2
A
)
(
∵
3
sin
2
A
−
2
sin
2
B
=
0
∴
sin
2
B
=
3
2
sin
2
A
)
=
3
sin
2
A
cos
A
−
2
3
(
sin
A
)
(
2
sin
A
cos
A
)
=
0
⇒
A
+
2
B
=
2
π
.