As given a and b are the roots of the equation x2+ax+b=0 ⇒ sum of roots, a + b = - a
⇒b=−2a ...(1)
and product of roots, ab = b ⇒ab−b=0 ⇒b(a−1)=0
if b = 0 then a = 0
if b = 0 then a = 1 and b = - 2
so, the expression will be, f(x)=x2+x−2 =x2+2.21x+(21)2−(21)2−2 ⇒f(x)=(x+21)2−49
So, f (x) will be minimum, if (x+21)2=0
i.e. when x=−21 ⇒ minimum value of function =−49