Q.
If A and B are independent events associated to some experiment E such that P(Ac∩B)=152 and P(A∩Bc)=61, then P(B) , then P(B) is equal to
2109
232
AMUAMU 2016Probability - Part 2
Report Error
Solution:
We have, P(Ac∩B)=152 and P(A∩Bc)=61 ⇒P(Ac)⋅P(B)=152 and P(A)⋅P(Bc)=61 ⇒[1−P(A)⋅P(B)=152 and P(A)⋅[1−P(B)]=61 ⇒[1−P(A)]⋅P(B)=152 and P(A)=6[1−P(B)]1 ∴[1−6[1−P(B)]1]⋅P(B)=152 ⇒6[1−P(B)][6−6P(B)−1]⋅P(B)=152 ⇒15[5−6P(B)]P(B)=2×6[1−P(B)] ⇒75P(B)−90P(B)2=12−12P(B)
Let P(B)=x ∴75x−90x2=12−12x ⇒90x2−75x−12x+12=0 ⇒90x2−87x+12=0 ⇒90x2−15x−72x+12=0 ⇒15x(6x−1)−12(6x−1)=0 ⇒(6x−1)(15x−12)=0 ⇒6x−1=0 or 15x−12=0 ⇒x=61 or x=1512=0 ⇒x=61 or x=54