Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
if A = [aij]4×3 where aij=(i-j/i+j),then find A
Q. if
A
=
[
a
ij
]
4
×
3
where
a
ij
=
i
+
j
i
−
j
,then find
A
4360
205
Matrices
Report Error
A
⎣
⎡
0
2
1
3
1
5
3
−
3
1
0
5
1
3
1
−
2
1
5
1
0
7
1
⎦
⎤
16%
B
⎣
⎡
0
3
1
2
1
5
3
−
3
1
0
5
1
3
1
−
2
1
−
5
1
0
−
7
1
⎦
⎤
59%
C
⎣
⎡
0
2
3
5
3
−
3
0
5
3
−
2
1
5
0
7
⎦
⎤
15%
D
⎣
⎡
0
−
3
1
−
2
1
−
5
3
3
1
0
−
5
1
−
3
1
2
1
5
1
0
−
7
1
⎦
⎤
11%
Solution:
Here,
a
ij
=
i
+
j
i
−
j
a
11
=
1
+
1
1
−
1
=
0
,
a
12
=
1
+
2
1
−
2
=
3
−
1
,
a
13
=
1
+
3
1
−
3
=
2
−
1
,
a
21
=
2
+
1
2
−
1
=
3
1
,
a
22
=
2
+
2
2
−
2
=
0
,
a
23
=
2
+
3
2
−
3
=
5
−
1
,
a
31
=
3
+
1
3
−
1
=
2
1
,
a
32
=
3
+
2
3
−
2
=
5
1
,
a
33
=
3
+
3
3
−
3
=
0
,
a
41
=
4
+
1
4
−
1
=
5
3
,
a
42
=
4
+
2
4
−
2
=
3
1
,
a
43
=
4
+
3
4
−
3
=
7
1
so, required matrix is
⎣
⎡
0
3
1
2
1
5
3
−
3
1
0
5
1
3
1
−
2
1
−
5
1
0
7
1
⎦
⎤