2098
193
Rajasthan PETRajasthan PET 2001
Report Error
Solution:
Given, a2x4+b2y4=c6 ⇒y4=b2c6−a2x4 ⇒y=(b2c6−a2x4)1/4
Let z=xy=x(b2c6−a2x4)1/4 ⇒z=(b2c6x4−a2x6)41 ⇒dxdz=41(b2c6x4−a2x8)−3/4.(b24x3c6−b28a2x7)
For maxima and minima, dxdy=0 ⇒41(b2c6x4−a2x8)−3/4×(b24x3c6−b28a2x7)=0 ⇒b24x3c6−b28a2x7=0 ⇒b24x3(c6−2a2x4)=0 ⇒c6−2a2x4=0 ⇒x4=2a2c6 ⇒x=±21/4a2/4c6/4=±21/4.a1/2c3/2 ∴ At x=±21/4ac3/2,z is maximum ∴z=[b2c6(2a2c6)−b2a2(2a2c6)2]1/4 =[2a2b2c12.4a2b2c12]1/4 =(4a2b2c12)1/4=2abc3