The given vectors are a=2i^+2j^+3k^,b=−i^+2j^+k^ and c=3i^+j^.
Now, (a+λb)⊥c(given) ⇒(a+λb)⋅c=0 (∵ scalar product of two perpendicular vectors is zero ) ⇒[(2i^+2j^+3k^)+λ(−i^+2j^+k^)]⋅(3i^+j^)=0 ⇒[(2−λ)i^+(2+2λ)j^+(3+λ)k^]⋅(3i^+j^)=0 ⇒(2−λ)3+(2+2λ)1+(3+λ)0=0 ⇒6−3λ+2+2λ=0 ⇒8−λ=0 ⇒λ=8
Hence, the required value of λ is 8 .