Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a2+b2+c2+a b+b c+c a ≤ 0, where a, b, c ∈ R, then domain of the function f(x)=√ operatornamesgn(x) ⋅(a x2+b x+c) will be
Q. If
a
2
+
b
2
+
c
2
+
ab
+
b
c
+
c
a
≤
0
, where
a
,
b
,
c
∈
R
, then domain of the function
f
(
x
)
=
sgn
(
x
)
⋅
(
a
x
2
+
b
x
+
c
)
will be
277
117
Relations and Functions - Part 2
Report Error
A
(
0
,
∞
)
B
[
0
,
∞
)
C
(
−
∞
,
0
]
D
(
−
∞
,
∞
)
Solution:
Θ
a
2
+
b
2
+
c
2
+
ab
+
b
c
+
c
a
≤
0
⇒
(
a
+
b
)
2
+
(
b
+
c
)
2
+
(
c
+
a
)
2
≤
0
⇒
a
+
b
=
b
+
c
=
c
+
a
=
0
⇒
a
=
b
=
c
=
0
∴
D
f
=
R