Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a2+b2+c2=-2 and f(x)=|1+a2 x (1+b2) x (1+c2) x (1+a2) x 1+b2 x (1+c2) x (1+a2) x (1+b2) x 1+c2 x| then f(x) is a polynomial of degree
Q. If
a
2
+
b
2
+
c
2
=
−
2
and
f
(
x
)
=
∣
∣
1
+
a
2
x
(
1
+
a
2
)
x
(
1
+
a
2
)
x
(
1
+
b
2
)
x
1
+
b
2
x
(
1
+
b
2
)
x
(
1
+
c
2
)
x
(
1
+
c
2
)
x
1
+
c
2
x
∣
∣
then
f
(
x
)
is a polynomial of degree
388
74
Determinants
Report Error
A
0
B
1
C
2
D
3
Solution:
C
1
→
C
1
+
C
2
+
C
3
f
(
x
)
=
∣
∣
1
+
2
x
+
x
(
a
2
+
b
2
+
c
2
)
1
+
2
x
+
x
(
a
2
+
b
2
+
c
2
)
1
+
2
x
+
x
(
a
2
+
b
2
+
c
2
)
(
1
+
b
2
)
x
1
+
b
2
x
(
1
+
b
2
)
x
(
1
+
c
2
)
x
(
1
+
c
2
)
x
1
+
c
2
x
∣
∣
(
as
a
2
+
b
2
+
c
2
=
−
2
)
∣
∣
1
1
1
(
1
+
b
2
)
x
1
+
b
2
x
(
1
+
b
2
)
x
(
1
+
c
2
)
x
(
1
+
c
2
)
x
1
+
c
2
x
∣
∣
∣
R
2
→
R
2
−
R
1
&
R
3
→
R
3
−
R
1
∣
∣
1
0
0
(
1
+
b
2
)
x
1
−
x
1
−
x
(
1
+
c
2
)
x
0
1
−
x
∣
∣
f
(
x
)
=
(
1
−
x
)
2
=
1
−
2
x
+
x
2
⇒
(
C
)