Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a2+b2+c2=1, then ab+bc+ca lies in the interval
Q. If
a
2
+
b
2
+
c
2
=
1
,
then
ab
+
b
c
+
c
a
lies in the interval
1820
180
Rajasthan PET
Rajasthan PET 2005
Report Error
A
[
2
1
,
2
]
B
[
−
1
,
2
]
C
[
−
2
1
,
1
]
D
[
−
1
,
2
1
]
Solution:
Given,
a
2
+
b
2
+
c
2
=
1
...(i)
(
a
+
b
+
c
)
2
≥
0
⇒
a
2
+
b
2
+
c
2
+
2
(
ab
+
b
c
+
c
a
)
≥
0
⇒
1
+
2
(
ab
+
b
c
+
c
a
)
≥
0
⇒
ab
+
b
c
+
c
a
≥
−
2
1
....(ii) and
(
a
−
b
)
2
≥
0
⇒
a
2
+
b
2
−
2
ab
≥
0
⇒
a
2
+
b
2
≥
2
ab
Similarly,
b
2
+
c
2
≥
2
b
c
,
c
2
+
a
2
≥
2
c
a
∴
2
(
a
2
+
b
2
+
c
2
)
≥
2
ab
+
2
b
c
+
2
c
a
⇒
a
2
+
b
2
+
c
2
≥
ab
+
b
c
+
c
a
⇒
1
≥
ab
+
b
c
+
c
a
...(iii)
Hence, from Eqs. (ii) and (iii),
−
2
1
≤
ab
+
b
c
+
c
a
≤
1
∴
Interval
=
[
−
2
1
,
1
]