Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a2+4 b2+9 c2+2 a b+6 b c+3 a c ≤ 0 where a, b, c ∈ R, then the number of distinct real roots of a x2+b x+c=0 will be
Q. If
a
2
+
4
b
2
+
9
c
2
+
2
ab
+
6
b
c
+
3
a
c
≤
0
where
a
,
b
,
c
∈
R
, then the number of distinct real roots of
a
x
2
+
b
x
+
c
=
0
will be
341
95
Complex Numbers and Quadratic Equations
Report Error
A
0
B
1
C
2
D
more than 2
Solution:
Θ2
a
2
+
8
b
2
+
18
c
2
+
4
ab
+
12
b
c
+
6
a
c
≤
0
⇒
(
a
+
2
b
)
2
+
(
2
b
+
3
c
)
2
+
(
3
c
+
a
)
2
≤
0
⇒
a
+
2
b
=
0
;
2
b
+
3
c
=
0
and
3
c
+
a
=
0
⇒
a
=
b
=
c
=
0
∴
Equation
a
x
2
+
b
x
+
c
=
0
will be an identity