We have, A=π1[sin−1(πx)sin−1(πx)tan−1(πx)cot−1(πx)]
and B=π1[−cos−1(πx)sin−1(πx)tan−1(πx)−tan−1(πx)]] ∴A−B =π1[sin−1(πx)+cos−1(πx)sin−1(πx)−sin−1(πx)tan−1(πx)−tan−1(πx)cot−1(πx)+tan−1(πx)] =π1[2π002π][∵sin−1x+cos−1x=π/2 and cot−1x+tan−1x=2π] =[210021]=21[1001]=21I