Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a1, a2, a3 ldots an are in H.P. and f(k)=(∑r=1n ar)-ak, then (a1/f(1)), (a2/f(2)), (a3/f(3)), ldots, (an/f(n)) are in
Q. If
a
1
,
a
2
,
a
3
…
a
n
are in H.P. and
f
(
k
)
=
(
∑
r
=
1
n
a
r
)
−
a
k
, then
f
(
1
)
a
1
,
f
(
2
)
a
2
,
f
(
3
)
a
3
,
…
,
f
(
n
)
a
n
are in
2707
230
Sequences and Series
Report Error
A
A.P.
B
GP.
C
H.P.
D
None of these
Solution:
f
(
k
)
+
a
k
=
r
=
1
∑
a
r
=
λ
(say)
∴
f
(
k
)
=
λ
−
a
k
⇒
a
k
f
(
k
)
=
a
k
λ
r
=
1
−
1
∴
a
1
f
(
1
)
,
a
2
f
(
2
)
,
…
,
a
n
f
(
n
)
are in A.P.
So
f
(
1
)
a
1
,
f
(
2
)
a
2
,
…
,
f
(
n
)
a
n
are in H.P.