Let d be the common difference of the given AP then, a2−a1=a3−a2=a4−a3=...=an−an−1=d ?(i) Now, a1+a21+a2+a31+a3+a41+....+an−1+an1 ?(ii) On multiplying by the rationalisation factor of every term in numerator and denominator, we get a2−a1a2−a1+a3−a2a3−a2+a4−a3a4−a3+....+an−an−1an−an−1 [using Eq.(i)] =d1[a2−a1+a3−a2+a4−a3+...+an−an−1]=d1(an−a1)=d1(an−a1).an+a1an+a1=d(an+a1)an−a1=d(an+a1)n−1[∵an=a1+(n−1)d]=an+a1n−1=a1+ann−1