Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a1,a2,a3,.......,a2n+1 are in A.P., then (a2n+1-a1/a2n+1+a1)+(a2n-a2/a2n+a2)+.......+ (an+2-an/an+2+an) is equal to
Q. If
a
1
,
a
2
,
a
3
,
.......
,
a
2
n
+
1
are in A.P., then
a
2
n
+
1
+
a
1
a
2
n
+
1
−
a
1
+
a
2
n
+
a
2
a
2
n
−
a
2
+
.......
+
a
n
+
2
+
a
n
a
n
+
2
−
a
n
is equal to
2920
234
Sequences and Series
Report Error
A
2
n
(
n
+
1
)
,
a
n
+
1
a
2
−
a
1
65%
B
2
n
(
n
+
1
)
15%
C
(
n
+
1
)
(
a
2
−
a
1
)
8%
D
none of these.
11%
Solution:
a
2
n
+
1
+
a
1
a
2
n
+
1
−
a
1
=
a
1
+
(
2
n
+
1
−
1
)
d
+
a
1
a
1
+
(
2
n
+
1
−
1
)
d
−
a
1
=
a
1
+
2
n
d
+
a
1
a
1
+
2
n
d
−
a
1
=
a
1
+
n
d
n
d
a
n
+
2
+
a
n
a
n
+
2
−
a
n
=
a
1
+
(
n
+
2
−
1
)
d
+
(
a
1
+
(
n
−
1
)
d
)
a
1
+
(
n
+
2
−
1
)
d
−
(
a
1
+
(
n
−
1
)
d
)
=
2
a
1
+
(
n
+
1
)
d
+
(
n
−
1
)
d
(
n
+
1
)
d
−
(
n
−
1
)
d
=
2
a
1
+
2
n
d
2
d
=
a
1
+
n
d
d
∴
given expression
=
a
1
+
n
d
d
(
1
+
2
+
3
+
.....
n
)
=
a
1
+
n
d
d
⋅
n
2
(
n
+
1
)