Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A = beginpmatrix(1/√5) (2/√5) (-2/√5) (1/√5) endpmatrix, B = beginpmatrix1 0 i 1 endpmatrix, i=√-1, and Q = A T B A, then the inverse of the matrix A Q2021 A T is equal to :
Q. If
A
=
(
5
1
5
−
2
5
2
5
1
)
,
B
=
(
1
i
0
1
)
,
i
=
−
1
, and
Q
=
A
T
B
A
, then the inverse of the matrix
A
Q
2021
A
T
is equal to :
1494
214
JEE Main
JEE Main 2021
Matrices
Report Error
A
(
5
1
2021
−
2021
5
1
)
23%
B
(
1
−
2021
i
0
1
)
32%
C
(
1
2021
i
0
1
)
31%
D
(
1
0
−
2020
i
1
)
14%
Solution:
A
A
T
=
(
5
1
5
−
2
5
2
5
1
)
(
5
1
5
2
5
−
2
5
1
)
A
A
T
=
(
1
0
0
1
)
=
I
Q
2
=
A
T
B
A
A
T
B
A
=
A
T
B
I
B
A
⇒
Q
2
=
A
T
B
2
A
Q
3
=
A
T
B
2
A
A
T
B
A
⇒
Q
3
=
A
T
B
3
A
Similarly :
Q
2021
=
A
T
B
2021
A
……
.
(1)
Now
B
2
=
(
1
i
0
1
)
(
1
i
0
1
)
=
(
1
2
i
0
1
)
B
3
=
(
1
2
i
0
1
)
(
1
i
0
1
<
b
r
/
>
)
⇒
B
3
=
(
1
3
i
0
1
)
Similarly
B
2021
=
(
1
2021
i
0
1
)
∴
A
Q
2021
A
T
=
A
A
T
B
2021
A
A
T
=
I
B
2021
I
⇒
A
Q
2021
A
T
=
B
2021
=
(
1
2021
i
0
1
)
∴
(
A
Q
2021
A
T
)
−
1
=
(
1
2021
i
0
1
)
−
1
=
(
1
−
2021
i
0
1
)