Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A= .1,2,3,4. , then a relation R= .(.1,1.),(.2,2.),(3 , 3),(.4,4.),(.2,4.),(.1,3.),(.1,4.),(.1,2.). on set A is
Q. If
A
=
{
1
,
2
,
3
,
4
}
, then a relation
R
=
{
(
1
,
1
)
,
(
2
,
2
)
,
(
3
,
3
)
,
(
4
,
4
)
,
(
2
,
4
)
,
(
1
,
3
)
,
(
1
,
4
)
,
(
1
,
2
)
}
on set
A
is
398
162
NTA Abhyas
NTA Abhyas 2022
Report Error
A
reflexive and symmetric only
B
an equivalence relation
C
reflexive only
D
reflexive and transitive only
Solution:
∵
(
2
,
4
)
∈
R
and
(
4
,
2
)
∈
/
R
∴
not-symmetric and
(
1
,
2
)
,
(
2
,
4
)
∈
R
⇒
(
1
,
4
)
∈
R
∴
Transitive
∵
(
a
,
a
)
∈
R
∀
a
∈
A
⇒
reflexive
∴
R
is reflexive and transitive.