Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A = [1& 1 &3 5&2&6 -2&-1&-3] , then A is
Q. If
A
=
⎣
⎡
1
5
−
2
1
2
−
1
3
6
−
3
⎦
⎤
, then A is
3965
217
Matrices
Report Error
A
idempotent
29%
B
nilpotent
22%
C
symmetric
22%
D
none of these
26%
Solution:
Here ,
A
2
=
AA
=
⎣
⎡
1
5
−
2
1
2
−
1
3
6
−
3
⎦
⎤
⎣
⎡
1
5
−
2
1
2
−
1
3
6
−
3
⎦
⎤
=
⎣
⎡
0
3
−
1
0
3
−
1
0
9
−
3
⎦
⎤
Hence,
A
3
=
A
2
A
=
⎣
⎡
0
3
−
1
0
3
−
1
0
9
−
3
⎦
⎤
⎣
⎡
1
5
−
2
1
2
−
1
3
6
−
3
⎦
⎤
=
⎣
⎡
0
0
0
0
0
0
0
0
0
⎦
⎤
=
O
,
⇒
A is a nilpotent matrix