Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A= [1 &1&1 1&2&3 1&3&4] , B= [7 16 22],X= [x y z] and AX = B, then z is equal to
Q. If
A
=
⎣
⎡
1
1
1
1
2
3
1
3
4
⎦
⎤
,
B
=
⎣
⎡
7
16
22
⎦
⎤
,
X
=
⎣
⎡
x
y
z
⎦
⎤
and
A
X
=
B
, then
z
is equal to
2252
191
COMEDK
COMEDK 2012
Determinants
Report Error
A
1
6%
B
-1
31%
C
-3
27%
D
3
35%
Solution:
We have ,
A
X
=
B
⇒
⎣
⎡
1
1
1
1
2
3
1
3
4
⎦
⎤
⎣
⎡
x
y
z
⎦
⎤
=
⎣
⎡
7
16
22
⎦
⎤
This have solution if
A
−
1
exists i.e.,
I
A
I
=
0
I
A
I
=
1
(
8
−
9
)
−
1
(
4
−
3
)
+
1
⋅
(
3
−
2
)
=
−
1
−
1
+
1
−
1
=
0
.
Hence,
A
−
1
exists.
Now,
X
=
A
−
1
B
⇒
⎣
⎡
1
1
1
1
2
3
1
3
4
⎦
⎤
−
1
−
⎣
⎡
7
16
22
⎦
⎤
Cofactor matrix of
A
=
⎣
⎡
−
1
−
1
1
−
1
3
−
2
1
−
2
1
⎦
⎤
∴
a
d
j
A
=
⎣
⎡
−
1
−
1
1
−
1
3
−
2
1
−
2
1
⎦
⎤
Now,
A
−
1
=
∣
A
∣
a
d
j
A
=
⎣
⎡
1
1
−
1
1
−
3
2
−
1
2
−
1
⎦
⎤
X
=
A
−
1
B
=
⎣
⎡
1
1
−
1
1
−
3
2
−
1
2
−
1
⎦
⎤
⎣
⎡
7
16
22
⎦
⎤
⇒
⎣
⎡
x
y
z
⎦
⎤
=
⎣
⎡
7
+
16
−
22
7
−
48
+
44
−
7
+
32
−
22
⎦
⎤
=
⎣
⎡
1
3
3
⎦
⎤
Hence ,
z
=
3