We have, ∣ai∣=∣ai−1+1∣ ⇒ai2=ai−12+2ai−1+1
Putting i=1,2,3,…,n+1, we get a12=0 a22=a12+2a1+1 a32=a22+2a2+1 ⋮⋮⋮ an2=an−12+2an−1+1 an+12=an2+2an+1
On adding, we get i=1∑n+1ai2=i=1∑nai2+2i=1∑nai+n ⇒2i=1∑nai=−n+an+12≥−n ⇒na1+a2+…+an≥−21 ⇒x≥−21.