Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A = beginpmatrix1&0 1&1 endpmatrix , then An + nI is equal to
Q. If
A
=
(
1
1
0
1
)
, then
A
n
+
n
I
is equal to
2432
245
KEAM
KEAM 2017
Matrices
Report Error
A
I
0%
B
nA
50%
C
I + nA
50%
D
I - nA
0%
E
nA - I
0%
Solution:
We have
A
=
[
1
1
0
1
]
∴
A
2
=
A
⋅
A
=
[
1
1
0
1
]
[
1
1
0
1
]
=
[
1
2
0
1
]
A
3
=
A
2
⋅
A
=
[
1
2
0
1
]
[
1
1
0
1
]
=
[
1
3
0
1
]
∴
A
n
=
[
1
n
0
1
]
Now,
A
n
+
n
I
=
[
1
n
0
1
]
+
n
[
1
0
0
1
]
=
[
1
n
0
1
]
+
[
n
0
0
n
]
=
[
1
+
n
n
0
1
+
n
]
Again,
I
+
n
A
=
[
1
0
0
1
]
+
n
[
1
1
0
1
]
=
[
1
0
0
1
]
+
[
n
n
0
n
]
=
[
1
+
n
n
0
1
+
n
]
∴
A
n
+
n
I
=
I
+
n
A