Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
if A = [1&0&0 0&1&1 0&-2&4],6A-1 = A2 +cA +dI, then (c,d ) is
Q. if
A
=
⎣
⎡
1
0
0
0
1
−
2
0
1
4
⎦
⎤
,
6
A
−
1
=
A
2
+
c
A
+
d
I
, then
(
c
,
d
)
is
3602
187
Matrices
Report Error
A
(
−
6
,
11
)
62%
B
(
−
11
,
6
)
24%
C
(
11
,
6
)
8%
D
(
6
,
11
)
6%
Solution:
Given,
6
A
1
=
A
2
+
c
A
+
d
I
⇒
6
A
1
−
A
−
A
2
A
+
c
A
+
d
I
⋅
A
⇒
6
I
=
A
3
+
c
A
2
+
d
A
⇒
A
3
+
c
A
2
+
d
A
−
6
I
=
0
Now,
A
2
=
⎣
⎡
1
0
0
0
1
−
2
0
1
4
⎦
⎤
⎣
⎡
1
0
0
0
1
−
2
0
1
4
⎦
⎤
=
⎣
⎡
1
0
0
0
−
1
−
10
0
5
14
⎦
⎤
A
3
⎣
⎡
1
0
0
0
−
1
−
10
0
5
14
⎦
⎤
⎣
⎡
1
0
0
0
1
−
2
0
1
4
⎦
⎤
=
⎣
⎡
1
0
0
0
−
1
−
10
0
5
14
⎦
⎤
∴
From equation
(
i
)
, we have
⎣
⎡
1
0
0
0
−
11
−
38
0
19
46
⎦
⎤
+
c
⎣
⎡
1
0
0
0
−
1
−
10
0
5
14
⎦
⎤
+
d
⎣
⎡
1
0
0
0
1
−
2
0
1
4
⎦
⎤
−
6
⎣
⎡
1
0
0
0
1
0
0
0
1
⎦
⎤
=
0
⇒
⎣
⎡
1
+
c
+
d
−
6
0
0
0
−
11
−
c
+
d
−
6
−
38
−
10
c
−
2
d
0
19
+
5
c
+
d
46
+
14
c
+
4
d
−
6
⎦
⎤
=
⎣
⎡
0
0
0
0
0
0
0
0
0
⎦
⎤
⇒
1
+
c
+
d
−
6
=
0
,
−
11
−
c
+
d
−
6
=
0
⇒
c
+
d
=
5
,
−
c
+
d
=
17
⇒
c
=
−
6
,
d
=
11