Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A =[0 - tan (α/2) tan (α/2) 0] and I is the identity matrix of order 2 , then [ cos α - sin α sin α cos α] is equal to
Q. If
A
=
[
0
tan
2
α
−
tan
2
α
0
]
and
I
is the identity matrix of order 2 , then
[
cos
α
sin
α
−
sin
α
cos
α
]
is equal to
2516
215
Matrices
Report Error
A
I
+
A
26%
B
I
−
A
24%
C
A
−
I
27%
D
A
23%
Solution:
Here,
A
=
[
0
t
−
t
0
]
, where
t
=
tan
(
2
α
)
Now,
cos
α
=
1
+
t
a
n
2
(
2
α
)
1
−
t
a
n
2
(
2
α
)
=
1
+
t
2
1
−
t
2
and
sin
α
=
1
+
t
a
n
2
(
2
α
)
2
t
a
n
(
2
α
)
=
1
+
t
2
2
t
=
(
I
−
A
)
[
cos
α
sin
α
−
sin
α
cos
α
]
=
(
[
1
0
0
1
]
−
[
0
+
t
−
t
0
]
)
[
1
+
t
2
1
−
t
2
1
+
t
2
2
t
1
+
t
2
−
2
t
1
+
t
2
1
−
t
2
]
=
[
1
−
t
t
1
]
[
1
+
t
2
1
−
t
2
1
+
t
2
2
t
1
+
t
2
−
2
t
1
+
t
2
1
−
t
2
]
=
⎣
⎡
1
+
t
2
1
−
t
2
+
2
t
2
1
+
t
2
−
t
(
1
−
t
2
)
+
2
t
1
+
t
2
−
2
t
+
t
(
1
−
t
2
)
1
+
t
2
2
t
2
+
1
−
t
2
⎦
⎤
=
[
1
+
t
2
1
+
t
2
1
+
t
2
−
t
+
t
3
+
2
t
1
+
t
2
−
2
t
+
t
−
t
3
1
+
t
2
2
t
2
+
1
−
t
2
]
=
⎣
⎡
1
+
t
2
1
+
t
2
1
+
t
2
t
(
1
+
t
2
)
1
+
t
2
−
t
(
1
+
t
2
)
1
+
t
2
1
+
t
2
⎦
⎤
=
[
1
t
−
t
1
]
Also,
I
+
A
=
[
1
0
0
1
]
+
[
0
t
−
t
0
]
=
[
0
+
1
t
+
0
−
t
+
0
0
+
1
]
=
[
1
t
−
t
1
]
=
(
I
−
A
)
[
cos
α
sin
α
−
sin
α
cos
α
]