Q.
If a>0,b>0 and a2+b=2, then the maximum value of the term independent of x in the expansion of (ax61+bx−31)9 is
4198
263
NTA AbhyasNTA Abhyas 2020Binomial Theorem
Report Error
Solution:
Let (k+1)th term be independent of x Tk+1=9Ck(ax61)9−k(bx−31)k =9Cka9−kbkx(69−k−3k)
For this to be independent of x, 69−k−3k=0⇒69=6k+3k=2k⇒k=3. ⇒Tk+1=9C3a6b3=84(a2b)6
Using A.M.≥G.M. we get 2a2+b≥a2b ⇒a2b≤1 ⇒Tk+1≤84