Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If |9C4&9C5&10Cr 10C6&10C7&11Cr+2 11C8&11C9&12Cr+4|=0, then the value of r is equal to .
Q. If
∣
∣
9
C
4
10
C
6
11
C
8
9
C
5
10
C
7
11
C
9
10
C
r
11
C
r
+
2
12
C
r
+
4
∣
∣
=
0
, then the value of
r
is equal to _______.
1347
189
Determinants
Report Error
Answer:
5
Solution:
Given
∣
∣
9
C
4
10
C
6
11
C
8
9
C
5
10
C
7
11
C
9
10
C
r
11
C
r
+
2
12
C
r
+
4
∣
∣
=
0
Apply
C
2
→
C
1
+
C
2
∣
∣
9
C
4
10
C
6
11
C
8
10
C
5
10
C
7
12
C
9
10
C
r
11
C
r
+
2
12
C
r
+
4
∣
∣
=
0
Value of the determinant = 0
⇒
column 2 is same as column 3
⇒
r
=
5