We know that, 54=625=13×48+1 ⇒54=13λ+1, where λ is a positive integer. ⇒(54)24=(13λ+1)24 =24C0(13λ)24+24C1(13λ)23+24C2(13λ)22 +...+24C23(13λ)+24C24
(by binomial theorem) ⇒596=13[24C01323λ24+24C11323λ22 +...+24C23λ]+1
=(a multiple of 13)+1
On multiplying both sides by 5, we get 597=596⋅5=5( a multiple of 13)+5
Hence, the required remainder is 5.