4a2+b2+2c2+4ab−6ac−3bc ≡(2a+b)2−3(2a+b)c+2c2=0 ⇒(2a+b−2c)(2a+b−c)=0 ⇒c=2a+b or c=a+21b
The equation of the family of lines is a(x+2)+b(y+1)=0
or a(x+1)+b(y+21)=0
giving the point of concurrence (−2,−1)
or (−1,−21) a(x+2)+b(y+1)=0
or a(x+1)+b(y+21)=0
giving the point of concurrence (−2,−1) or (−1,−21)