Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If |3i&-9i&1 2&9i&-1 10&9&i| = x + iy , then
Q. If
∣
∣
3
i
2
10
−
9
i
9
i
9
1
−
1
i
∣
∣
=
x
+
i
y
, then
2237
234
KEAM
KEAM 2017
Determinants
Report Error
A
x = 1, y = 1
0%
B
x = 0, y = 1
100%
C
x = 1, y = 0
0%
D
x = 0, y = 0
0%
E
x = -1, y = 0
0%
Solution:
We have,
∣
∣
3
i
2
10
−
9
i
9
i
9
1
−
1
i
∣
∣
=
x
+
i
y
⇒
∣
∣
3
i
+
2
2
10
0
9
i
9
0
−
1
i
∣
∣
=
x
+
i
y
[
∵
R
1
→
R
1
+
R
2
]
⇒
(
3
i
+
2
)
[
9
i
2
+
9
]
=
x
+
i
y
⇒
(
3
i
+
2
)
(
−
9
+
9
)
=
x
+
i
y
[
∵
i
2
=
−
1
]
⇒
0
=
x
+
i
y
⇒
x
=
0
,
y
=
0