Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ( 30 C 1)2+2( 30 C 2)2+3( 30 C 3)2+ ldots+30( 30 C 30)2=(α 60 !/(30 !)2) then α is equal to :
Q. If
(
30
C
1
)
2
+
2
(
30
C
2
)
2
+
3
(
30
C
3
)
2
+
…
+
30
(
30
C
30
)
2
=
(
30
!
)
2
α
60
!
then
α
is equal to :
1766
127
JEE Main
JEE Main 2023
Permutations and Combinations
Report Error
A
60
8%
B
10
6%
C
15
60%
D
30
26%
Solution:
S
=
0
⋅
(
30
C
0
)
2
+
1
⋅
(
30
C
1
)
2
+
2
⋅
⋅
(
30
C
2
)
2
+
……
+
30
⋅
(
30
C
30
)
2
S
=
30.
(
30
C
0
)
2
+
29.
(
30
C
1
)
2
+
28.
(
30
C
2
)
2
+
…
..
+
0.
(
30
C
0
)
2
2
S
=
30
⋅
(
30
C
0
2
+
+
30
C
1
2
+
……
.
⋅
30
C
30
2
)
S
=
15
⋅
60
C
30
=
15
⋅
(
30
!
)
2
60
!
(
30
!
)
2
15
⋅
10
!
=
(
30
!
)
2
α
⋅
60
!
⇒
α
=
15