Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (3+x2008+x2009)2010= a0 + a1x+a2x2+...+anxn, then the value of a0-(1/2)a1 -(1/2) a2+a3 -(1/2)a4-(1/2) a5 +a6 - ... is
Q. If
(
3
+
x
2008
+
x
2009
)
2010
=
a
0
+
a
1
x
+
a
2
x
2
+
...
+
a
n
x
n
,
then the value of
a
0
−
2
1
a
1
−
2
1
a
2
+
a
3
−
2
1
a
4
−
2
1
a
5
+
a
6
−
...
is
2356
198
Binomial Theorem
Report Error
A
3
2010
B
1
C
2
2010
D
none of these
Solution:
Put
x
=
ω
,
ω
2
(
3
+
ω
+
ω
2
)
2010
=
a
0
+
a
1
ω
+
a
2
ω
2
+
...
⇒
2
2010
=
a
o
+
a
1
ω
2
+
a
2
ω
+
a
3
+
a
4
ω
+
.....
(
1
)
and
2
2010
=
a
0
+
a
1
ω
2
+
a
2
ω
+
a
3
+
a
4
ω
+
.....
(
2
)
Adding
(
1
)
an
d
(
2
)
,
we have
2
×
2
2010
=
2
a
o
−
a
1
−
a
2
+
2
a
3
−
a
4
−
a
5
+
2
a
6
−
...
or
2
2010
=
a
o
−
2
1
a
1
−
2
1
a
1
+
a
3
−
2
1
a
4
−
2
1
a
5
+
a
6
...