Q.
If −3<x2+x+1x2−λx−2<2 for all x∈R, then the value of λ belongs to
2279
228
NTA AbhyasNTA Abhyas 2020Complex Numbers and Quadratic Equations
Report Error
Solution:
−3<x2+x+1x2−λx−2<2 ⇒−3x2−3x−3<x2−λx−2<2x2+2x+2(sincex2+x+1>0,∀x∈R) ⇒4x2+x(3−λ)+1>0,x2+x(2+λ)+4>0 (i)4x2−x(λ−3)+1>0 ⇒D<0⇒(λ−3)2−4×4×1<0 ⇒(λ−3+4)(λ−3−4)<0 ⇒(λ+1)(λ−7)<0⇒λ∈(−1,7) (ii)x2+x(λ+2)+4>0 ⇒D<0⇒(λ+2)2−4×4<0 (λ+2−4)(λ+2+4)<0(λ−2)(λ+6)<0⇒λ∈(−6,2)
Taking the intersection of the solutions of (i) and (ii) , we get, λ∈(−1,2)